If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-12b-76=0
a = 1; b = -12; c = -76;
Δ = b2-4ac
Δ = -122-4·1·(-76)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{7}}{2*1}=\frac{12-8\sqrt{7}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{7}}{2*1}=\frac{12+8\sqrt{7}}{2} $
| 5(110x+3)=2x | | p-1128=-24p-3 | | 1x+3=30 | | 4/7v=12 | | 0.25*m+240=0.40*m+180 | | G(3)=x/3 | | 7p+45=p-129 | | 3(x+1)/2=2x | | 20e+6=e-697 | | 8z+7-3z=7+4z-7 | | 2(6x+1)=4(×-5)-2 | | y/3=9.6 | | 82=-2x+3(3x+4) | | -24d-32=d-857 | | 2x-2=8x-8 | | d+130=-2d-8 | | 1/4m+3/4m=0 | | b+112=-2b-29 | | (40+x)(0.6)=40(0.5)+0.1x | | w+194=-9w-6 | | 3y+3y=5y+6 | | 2(a-2)=3(a-5 | | G(x)=x/3 | | d+242=-6d-3 | | r-397=-29r-7 | | 10=(2/3)x | | 7x9=(7x10)-(7x∆) | | 3c-7=c+15 | | 7x9=(7x10)-(7x∆ | | -4p+51=p+106 | | -7p+3=p+91 | | (n)+(n+1)+(n+2)=240 |